Selective TEMPO-Mediated Oxidation of Thermomechanical Pulp

نویسندگان

  • Pu Ma
  • Huamin Zhai
چکیده

Carboxylic acid groups were introduced onto thermomechanical pulp (TMP) long fiber surfaces by 2,2,6,6,tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated oxidation in the present study. The number of introduced carboxylic groups was closely related to the NaClO dosage, and more flexible fibers with lower curl and kink index were generated. Lignin was dissolved during the TEMPO-mediated oxidation, and its content was 24.2% with a carboxylic content of 1444 mmol/kg, in contrast to the control, which had 33.6%. Meanwhile, significant decreases in uncondensed lignin and β-O-4 lignin were observed during the TEMPO-mediated oxidation. The generation of carboxylic acid groups enhanced both the tensile and burst strengths of oxidized TMP significantly, and the value was 70% higher than the control with a carboxyl content of 1444 mmol/kg. However, side reactions during TEMPO-mediated oxidation led to a decline in intrinsic fiber strength, which may have contributed to the decline in paper tear strength.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influences of Integrated Tempo-mediated Oxidation and Recycling on the Properties of Tmp Fibers

In order to improve the properties of thermomechanical pulp (TMP), the influences of the TEMPO (2,2,6,6-tetramethylpiperidyl-1-oxyl radical)mediated oxidation on recycled TMP properties were investigated, and the impacts of recycling process on TEMPO-mediated oxidized TMP properties were studied as well. The results showed that TEMPOmediated oxidation is an effective way to enhance the recycled...

متن کامل

TEMPO/NaBr/NaClO-Mediated Surface Oxidation of Nanocrystalline Cellulose and Its Microparticulate Retention System with Cationic Polyacrylamide

TEMPO/NaBr/NaClO-mediated surface oxidation of NCC, acid-extracted from aspen kraft pulp, was studied, and the properties of nanocellulose whiskers before and after oxidation were characterized by conductimetry, Fourier transform infrared spectroscopy, X-ray diffraction, and atomic force microscopy. The resulting products with varied oxidation degrees were then applied in the deinked pulp to ev...

متن کامل

Influence of High Shear Dispersion on the Production of Cellulose Nanofibers by Ultrasound-Assisted TEMPO-Oxidation of Kraft Pulp

Cellulose nanofibers can be produced using a combination of TEMPO, sodium bromide (NaBr) and sodium hypochlorite, and mechanical dispersion. Recently, this process has been the subject of intensive investigation. However, studies on the aspects of mechanical treatment of this process remain marginal. The main objective of this study is to evaluate the high shear dispersion parameters (e.g., con...

متن کامل

Chemical Recovery in TEMPO Oxidation

To be regarded as environmentally friendly and economical, an industrial process using 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) oxidation requires recycling and/or recovery of chemicals. In this work, hypochlorite recycling via electrolysis was evaluated and potential means for TEMPO recovery were explored. The most important variable affecting electrochemical hypochlorite conversion was th...

متن کامل

Nanopaper Properties and Adhesive Performance of Microfibrillated Cellulose from Different (Ligno-)Cellulosic Raw Materials

The self-adhesive potential of nanocellulose from aqueous cellulosic suspensions is of interest with regard to a potential replacement of synthetic adhesives. In order to evaluate the performance of microfibrillated cellulose from different (ligno-)cellulosic raw materials for this purpose, softwood and hardwood powder were fibrillated and compared to sugar beet pulp as a representative non-woo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013